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Almmta--This paper describes a method of predicting transient, two-phase flows in channels, and Wesents 
predictions for several problems. The model is based on a Lngranginn drift-flox formulation of the 
equations of mass and energy in which the liquid phase can be subcooled. The edvantalle of the preuat 
model over previous models lies in the sohJfion technique, which yields accmate solutions very in- 
expensively and without problems related to stability. In the teclm/que used, analyl~d soluti~s to the 
differential equations that are valid over limited time and space intervals are used to coumuct the 
solution. The example problems include subcooled boiling, flow reversals and blowdown transients. 

INTRODUCTION 
The equations describing the instantaneous motion of the fluids and interfaces in multi-phase 
flow are known (Ishii 1973) but solutions to these equations are not within reach. Much more 
tractable equations can be obtained by performing certain averages over time and space, by 
introducing idealizations, and by supplying information (e.g. through correlations) that has been 
lost ih the averaging process. The starting point of most recent analyses of two-phase flow has 
been the equations of mass, momentum and energy, with time and one-space coordinate as the 
independent variable. In general, the phase velocities and temperatures are not equal (UVUT) 
but idealizations may include equal velocity (EV) and/or equal temperature (ET). 

One thrust of recent research has been the .development of "higher level" codes to solve the 
equations that embody fewer idealizations and approximations (e.g. UV, UT, 2 or 3 space 
dimensions). However, in applications where many solutions are required, as in design or when 
the code is to be used as part of a larger systems code to predict the performance of certain 
components, economics often dictates the use of a low level code which is inexpensive to run. 
In these cases, the idealizations and approximations embedded in a code of restricted generality 
could be checked by a few comparisons with predictions of the more general code, and then the 
less general code used. The objective of the present study was the development of a solution 
method and computer code, falling into the latter category, which is extremely attractive in 
terms of accuracy, economy and stability, and yet sufficiently general to handle many of the 
problems of practical interest. 

The present model is based on the cross-sectionally averaged equations of mass and energy. 
The two momentum equations are replaced by a prescription of the vapour drift velocity, and 
by an assumption that the pressure drop along the channel is not significant. The latter 
approximation makes the model unsuitable for the prediction of pressure-wave propagation. In 
addition, boundary conditions specified as a pressure difference between the ends of the 
channel are awkward to handle (Khater et el. 1980). 

On the positive side, the FAST method treats temporally and spatially variable wall heat 
flux, as well as pressure and flow transients. The effects of departure from thermal equilibrium 
and radial conduction in fuel rods and channel walls are accounted for in the model. A really 
unique feature is the high solution accuracy that can be achieved at low cost and without 
solution difficulties (e.g. instability). The FAST code and the programmer's manual are 
presently publicly available (Khater et al. 1980). 

The FAST method is described in the next section. This is followed by the presentation of 
the results of several calculations. 

tFinite.interval Analytic Solution Technique. 
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An overview o[ the method 
FAST is an acronym for Finite-interval Analytic Solution Technique. In this method, 

analytical solutions to the equations of interest are obtained which are valid within discrete 
intervals of time and space. The total space and time domain over which a solution is desired 
is divided into discrete intervals of the appropriate size, and the analytic solutions that are 
valid within each of these subdomains are used to construct the solution over the whole 
domain. 

Variations of this solution method have been independently discovered, applied and 
reported by several authors. The present work represents an extension of the "Hybrid" method 
of Inayatullah et ai. (1977), but the name has been changed to FAST to avoid confusion with 
other methods. Nijsing & Eifler (1975) described a somewhat similar method for problems in 
heat conduction, while Spalding (1972) and Raithby & Torrance (1974) developed finite- 
difference schemes based on locally-valid analytical solutions. 

To use such a method, one must be able to find the necessary locally-valid analytical 
solutions from which the global solution is constructed. The ease with which the desired 
solutions can be obtained depends greatly on which of several alternative formulations of the 
conservation equations is used. Also, the degree to which simplifications, that are necessary to 
obtain the desired solutions, limit the domain of validity of the solution depends on the 
formulation. With these points in mind, the advantage of starting with equations in Lagrangian 
coordinates, in which time is the only independent variable, will be appreciated. In particular, 
the drift-flux formulation of Zuber & Staub (1966), which has already led to several analytical 
solutions (e.g. Staub & Zuber 1967; Lahey et al. 1972; Inayatullah & Nicoll 1976). 

The Conservation equations 
The mass conservation equations for vapour and liquid respectively are (Khater et al. 1980): 

0 0 
--Or (otpv) + "~ (apv Vv) = (F) [ 1 1  

-~t ((1 - Ot)pL) + O~ ((1 - ct)pLVL) = - ( r )  [2] 

where ( ) represents a cross-sectional average, and where a is the void fraction, p is the 
density, V is the velocity and F is the rate of vapor generation, t is the time and z is the axial 
position. The subscript v indicates vapour and L indicates liquid. Ignoring conversion of 
potential and kinetic energy to internal energy, the energy conservation equations are (Khater et 

al. 1980): 

0 °(apou,) + (apoVoiv) = ( r .o )  [31 7z 

~((1 - a)pLUL) + -~z ((1 - ot)pL VLiL) = ( [ ' u L )  [4] 

where u is the internal energy and i is the enthaipy. The general expressions for (F,~) and (F,L) 

are (Khater et al. 1980): 
. . . . .  a(c,) 

q wPh~ q,~Ai ). (F)u,,i - p [5] 
(F"v) = Ac Ac 3t 

. . . . .  A' 0(1- ) [6] q w l ' h L  L q t , i  i / r \ ,  a 
( F . D  = ~- - - -  \ ~ / - L i  - -  P A,, A~ 0t 
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where q" is the heat flux, Ph is the heated perimeter, Ac is the cross sectional area, A~ is the 
interface area per unit length and p is the pressure. In [5] and [6], the terms representing 
internal heating and dissipation at the interface have been ignored. 

Lagrangian dri]t-]lux formulation 
For the reasons already given, a generalization of the drift-flux formulation of Zuber & Staub 

(1966) was adopted. The formulation contains the distribution parameter Co, which accounts for 
void and velocity variations across the cross-section, and the vapour drift velocity V~j, where 

C0 ffi (ai)l(a ) [7] 

Vvj" Vv - j ;  jm(aV~)+((1-a)VD [8] 

where ] is the superficial velocity. In addition, many other parameters (Khater et al. 1980) arises 
when [1]-[6] are converted to the drift-flux formulation. To obtain a tractable set of equations, 
the following approximations are introduced within a particular interval, or subdomain, in time 
and space: 

(1) Internal heating, the work done by interfacial shear stresses and, as already stated, the 
conversion of kinetic and potential energy to internal energy are all ignored. 

(2) the enthalpies of the two phases are uniform over the cross-sections. 
(3) The density of the two phases, the latent heat of vaporization, Co, and Ve are all constant 

(over the subdomain). The values of the latter two are obtained from correlation equations, as 
functions of a alone. 

(4) The interface between vapour and liquid remains at saturation. 
(5) All averages of products (except for (a j) in [7]) are approximated as the product of the 

averages. Thus, for example, (ai~) is approximated as (-Xio). 
Even with approximation 5, there are three propagation velocities, V~, in equations of the 

Ox Ox 
form ~ + Vx ~z = F~ The liquid and vapour enthalpies are propagated at velocities VL and V~ 

respectively, and void is propagated at Va, where 

vaffi Co )+ [9] 

Althoulh not an essential approximation, the propagation velocities for /, and JL have, for 
simplicity, been both approximated by V,. While this is not true in general, for problems in 
which the drifl-~tx formulation is generally satisfactory Voj will be small so that little error is 
introduced. There are situations however (e.g. counter current or stratified flows) where this 
approximation will not be adequate. Further discussion of the validity of the drift flux 
formulation and the assumed equality of the propagation velocities may be found in Khater et 
al. (1980). 

As pointed out in the Introduction, the effect of pressure gradients along the channel have 
been ignored. Pressure would normally be specified as a boundary condition at the inlet or 
outlet and this pressure is then taken as the system pressure. Such a treatment implies that the 
pressure propagates at infinite velocity. 

Equations [1]-[6] can be transformed to a set of drift-flux equations (Khater et al. 1980) 
which become greatly simplified when the above approximations are introduced. Because of 
space limitations, only the resulting equations will be reported here in terms of the foflowing 
non-dimensional parameters: 

z* = L; ~ = --L'; Xo 

a* -- CoAp(a). r* = C~pL ff~; V*~ ffi V~ 
PL ' pLpGVa '" ~ Va 

[lo] 
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where V, is a reference velocity, ;to is the reference latent heat of vaporization and L is a 
reference length (usually the channel length). The equations resulting from combining [1] and 
[2] are 

Da* 
Dr = (1 - a*)F* [11] 

f: Dr = (V*)o+ Co dz* [12] 

where (V*)0 is the specified instantaneous value of V* at z* = 0. The following vapour 
generation equation is obtained by adding [3] and [4] and combining the result with [1] and [2], 
assuming that any vapour produced remains at saturation conditions: 

r*- -  1 
( i ~ - i ~  pLpGV~ JAlAp Xo aoCoAp - C ~ p ] ~ ]  [13] 

where 1 b - 0p 
0t" 

The propagation equation for liquid enthaipy, obtained from [3] and [5] is: 

Di[ L 1 [q'~PhL+q'~A~ p~ooV . - , .  (1 pLa*~P~ 
= ( - - C o a p : ¥ j  Dr pL V a 1 - PLa~ [ AcAo A~Ao CoApL Y (t~ - iT) + 

CoAp 

[14] 

Under the conditions just mentioned, that the vapour produced remains at saturation con- 
ditions, the propagation equation for vapour enthalpy becomes: 

Di~ = CGPL[( V.Ao) [15] 
Dr 

Solution procedure 
The fluid in the channel is initially divided into NELM elements, and a time step A~- is 

chosen. The FAST procedure uses analytical solutions to the above equations, which are valid 
over the spatial subdomain occupied by the element and over the time A~-, to find the liquid 
enthalpy, the void, and the position of each element at the end of the time step. Some iteration 
is required because the analytical solutions used for different variables are coupled. The 
element, or some elements, near outflow boundaries may leave during the AT time interval. In 
addition, one or more elements are made to enter at the inflow boundary, or boundaries, during 
A~-. The final position and properties of each element at the end of the time step are the initial 
conditions for the next time step. The number of elements that are required, and the allowable 
time step, are dictated by the extent of the spatial and temporal domains over which the 
analytical solutions are valid. For the analytical solutions used, often very few elements and 
very large A~-'s were sufficient to make the global.solution independent of NELM and A~'. 

Before deriving the analytical solutions, it is necessary to describe the subscripting used. 
The time-vs-displacement trajectories of fluid elements in the channel are sketched in figure 1. 
At time level i the centres of the elements in the channel are shown ((i, 1), (i, 2) . . . . .  (i, j) . . . .  
(i, NELM)). At ri+b A~" later, their positions have changed as shown; one element has been 
"lost" through the z* = 1 boundary and two have been added through z* = 0. Attention is 
focussed on the jth element in the time interval r~ -< ~- -< ~÷~. A doubly subscripted variable (e.g. 
a~) refers to its value at the point (i,j); a single subscript (e.g. a~) refers to the value of the 
variable at a general time r within the time interval under consideration. 
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ELEMENTS INTRODUCED TRAJECTORY OF CENTRE 
T IN TIME S T E P ( T i + I - r  i }  OF j t h  ELEMENT 

/ / / , o i1 ~,~ FLOW B O t ~  / / / / ~  

; ' l I Ti ~ R 
- , .2  "Lk i j - ,  iTj i..E.M ~,fOUTFLOW 

", ¢ 
.,e---'-- INFLOW BOUNDARY ~ ... 

O.O 1.0 Z t' 

F'~gure 1. Element positions at the bellinning and end of time step. 

Some additional simplifications are introduced into [12]-[14], which are valid over restricted 
subdomains of ~- and z*, in order to obtain the required analytical solutions. For a particular 
element over the A~" interval, these are: 

(6) The inlet velocity is a linear function of time over the A, interval, i.e. (V*)o= 
(V~)o~+(Q*)d~'-~'i), where (V*)oi is the inlet velocity at 1-~ and (Q*)o is the average rate of 
change of (V*)0 with ~ over the A~- interval. 

(7) The saturation enthalpies of both phases are linear functions of pressure (over the 
subdomain). 

(8) The wall heat flux is constant (over the subdomain). 
(9) In calculating F* from [13], i~ -  i~ is replaced by the average value for the jth element over 

the time interval (i.e. ( i~-  iY.)) and D/]~JDr is replaced by ((i~)i+lj - (iY.)~)/A,. 
With these approximations, [11] and [13] can be combined to give, for the jth element, 

Dr a. + baa*~ + c.(a'f) 2 [16] 

where a~, ba and ca are constants over a particular subdomain (see appendix A.). The initial 
conditions are a~ = a~ at ~-= I-,. The solution to [16], which depends on the sign of A, = 
4aaca -- b 2, is (Gradshteyn & Ryzhik 1965): 

~ =  

b~ - V - - ~  - (b° + V-A . )  exp IV--X:.(, + cOL 
2ca(exp [~/-Aa0" + C I ) ]  - -  1 

A,, <0 

, 

1 {~/~--~ tan [~A"a,(~+c3) 

The details appear in appendix A. 
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The position of this element at T > ~'i is obtained from [12]. The integral is approximated as 

where is the value of at z~ + A~-/2 averaged over the range z ~] -< z* * <- Z~k+V Introducing 
k 

approximation 6 and carrying out the integration yields the following position of the jth element as 
a function of z: 

_ (v_*~)o {~ _ ~ exptf '*,(~ - ~,))}. 
r,* 

[ 1 8 ]  

When F~ approaches zero, the exponentials in [18] are replaced by their Taylor series 
expansion. Some details related to the derivation of [18] are contained in appendix A. 

The solution to the liquid enthalpy equation [14] for the jth fluid element is now described. 
Substituting [13] for F* into [14], defining (Cp)L = ( i f -  {iL})/(T~- TL), replacing a* over the jth 
element during the interval AT by ot~, and using approximation 7, the liquid enthalpy equation 
becomes 

Di~z = D¢ kl + k2z + k3i~j + k4"r 2 + k~'i~ i + k6(i~) 2. [191 

The values of kt to k6 are constants over the jth element and over AT. The series solution to this 
equation is 

lLj  = nA.r "-~ -k6 1+ A.r" 
n~l  n=I 

[20] 

Again, the details related to [19] and [20] are contained in appendix A. 
For the element closest to z* = 0, and starting at "ri, the closed-form solutions above are used 

to determine the position and properties of the element at Ti+~. This process is then repeated for 
each element in the channel. Presuming that solutions have already been obtained for the first 
j - 1 elements, the solution for the jth element is established as follows: 

Step I. The enthalpy of the liquid in the jth element is found from [20]. The constants 
contain the average void a~ which is not yet known. In the present study it was found that a* 
could be replaced, without appreciable error, by a ~. This avoids the need for iteration. 

Step 2. With Di~JD'r known (see approximation 9), the constants in [17] can be evaluated 

and a ~'+tj found. 
Step 3. The values of (i~)i+lj, F,*+~j and a~*+lj (i.e., at ri+0 are now known and the position of 

the element at ~-~+~ is sought. This is found from [18]. Iteration is needed because the averaged 
quantities denoted by (') depend on the final position of the element (i.e. on z~*+tj). 

These solutions then serve as initial conditions for the advancement of the solution over the 
next time step. 

A P P L I C A T I O N S  

The predictions obtained by applying the FAST procedure to several problems are now 
reported. In some cases these predictions are compared with experimental data. In other cases, 
contrived problems, for which there are no experimental data available, have been used to 
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demonstrate the capabilities of FAST. In the first category, the accuracy of the predictions will 
depend on the expressions chosen for Co, V,j, A;, etc., so that care is needed in their selection. 
When only a demonstration of capability is desired, the particular choice becomes of much less 
importance. The physical phenomena in the problems chosen involve subcooled boiling, flow 
reversal and blowdown. 

Steady subcooled boiling 
For subcooled boiling predictions, the following expression for Co, developed by Hancox & 

Nicoll (1971), was used: 

Co= 1 + Co,(l -Ca)) 
Co, = 1.164- 3.655P~ + 3.670P r2~e. [21] 

For the drift velocity, V,j, the following simple approximation was used 

V,i = 0. [22] 

When the liquid is highly subcooled, the vapour is confined to a region very near the wall. 
Applying the approximation due to Hancox & Nicoli (1971), the vapour is modelled as forming 
an annular ring adjacent to the wall so that the liquid-val our interface area is 

A~ = ~'DhV(1 - ,,). [231 

Direct heating of the liquid is ignored (P~ = 0 in [14]). The heat transfer from the vapour 
interface to the subcooled liquid is given by 

m 

q~, = h u ( i t -  (iL))I(G)L. [24] 

The value of hll was taken as the maximum of the two quantities inside the brackets in the 
equation 

= . [25] 

The first expression, intended for high velocities, was proposed by Hancox & Nicoli (1971), 
while the second, for low velocities, was taken from the work of Saha & Zuber (1974). 

Upstream of the "point of significant vapour generation", (a) is assumed to be zero, and the 
heat transfer that can be accepted by the liquid, without requiring superheat at the wall, is given 
by [24]. if q~<q~Li all the wall heat transfer is passed to liquid, thereby reducing its 
subcooling, A~= 0, and P~  = ~rDh in [14]. The "point of significant vapour generation" is 
located where q:. = q~i. Farther downstream, unless q~ is sharply reduced, subcooled boiling 
o c c u r s .  

The assumptions embodied in [23] and [25] are no longer valid if (a) is large. However, 
when (a) has become large, the subcooling of the liquid must be small (i.e. ~ '-- quAi 0) so that 
large percentage errors in q~A] become inconsequential. 

Comparisons between predicted and measured void distributions have been made for a 
total of 63 experiments reported by Egen et al. (1957), Maurer (1956), Christensen (1961), 
Marchaterre et al. (1960) and Foglia et al. (1961). The experiments covered a wide range of flow 
conditions and inlet subcooling, but were steady in all cases. (There are, unfortunately, no 
extensive and reliable measurements of axial void distributions for unsteady flows.) A 
representative sample of the comparisons are presented in figure 2. The root mean square 
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Figure 2. A representative sample of the comparisons made between predicted and measured a under 
subcooled boiling conditions. 

deviation between measured and predicted void, including all 63 cases, was about 5%. The 
model, therefore, adequately represents the departures from thermal equilibrium which occur in 
this type of flow. 

The results shown in figure 2 were obtained using 10 elements in the channel. The CPU time 
required for each run was about 1 second on an IBM 360-75 computer. Predictions for some of 
the cases were repeated using respectively, 6, 32 and 51 elements in the channel. The results 
using 10, 32 and 51 were virtually identical, while the predictions with 6 elements, including the 
point of incipient boiling, were only slightly different. 

Tests were also done with hu values from 0.25 to 4.0 times the values given in [25], but the 
predictions based on this equation agreed most closely with measurement. Predictions were 
repeated for C, values of 1.0, 1.13, 1.2, and 1.5, but [21] yielded superior agreement with 
experiment. Finally, other drift velocities were used, but again, the original proposal [22] was 
found to be the most suitable. 



THE"FAST"SOLUTION PROCEDURE 269 

Flow reversal 
The direction of flows in a channel may be reversed, either locally or everywhere, as a 

consequence to two distinct mechanisms: (1) reversal of the channel-end velocity; (2) a change 
in the mean density of the fluid in the channel, either through vaporization or condensation 
(density driven reversal). Of course, in any given problem, both mechanismsmay be operative. 
Two contrived problems are presented below to cover the above-mentioned situations. Equa- 
tions [21]--(25] are used to determine Co, Vvi, and the inter-phase heat transfer. 

The first problem considered is a simple type of boundary-condition driven flow reversal. 
The physical system consists of a constant area channel with constant and uniform heat flux. At 
the start of the transient, the inlet velocity is decreased at a uniform rate. A slight depres- 
surization is assumed to illustrate that simultaneous boiling and flashing poses no problem. The 
initial and boundary conditions, together with the predictions of axial void distributions and 
local mixture velocity, are shown in figure 3. The predictions are plausible for the postulated 
conditions and, most importantly, display the capability of the FAST procedure to deal with 
inlet flow reversal and with situations in which the flow may be outward from the channel at 
both ends. 

In the previous example, vapour was generated both through subcooled boiling and through 
flashing. The second problem is chosen to illustrate flow reversal due to condensation. Again, a 
constant area channel is considered, but at the start of the transient both the inlet flow and the 
wall heat flux are abruptly set to zero. Since in the upstream portion of the two-phase region the 
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Figure 3. Predicted axial distributions of void (a) and mixture velocity (b) for a linear decrease in inlet 
velocity and system pressure for a contrived problem. 
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Figure 4. Predicted axial distributions of void (a) and mixture velocity (b) for a sudden flow stoppage at the 
inlet and power shutdown. 

liquid phase is still significantly subcooled, heat will be transferred from the interface to the 
liquid, with resultant condensation of the vapour. Farther downstream, where the liquid has 
nearly reached saturation, no inter-phase heat transfer and no condensation will occur. For 
these fluid elements, the void and mixture density should remain nearly constant. These 
expectations are consistent with the predicted axial void distributions shown in figure 4. With 
regard to the former, we note that condensation is indeed predicted in the upstream portions of 
the initial two-phase region and that little change in void is predicted for those fluid elements 
which initially had a relatively high void. Because of the upstream condensation, however, 
these fluid elements are drawn back toward the region of condensation and it becomes 
necessary to specify the state of the fluid which is drawn into what was originally the 
downstream end of the channel. In the present problem, this has been chosen as saturated 
liquid. Two observations are appropriate here. First, it can be seen that the discontinuity 
between the void of the fluid originally in the channel and that of the new fluid drawn into the 
channel is not diffused; it is a characteristic of the present method that the "artificial" or 
"false" diffusion (Raithby 1975) associated with Eulerian finite-difference methods is not 
present. Second, it has been said that the state of the fluid drawn into the system must be 
specified, This is true, of course, of any prediction procedure, only in the present case there is 
no need to devise different procedures for inflow and outflow boundaries. Since the prediction 
procedure is Lagrangian. the initial states of the particular fluid elements being tracked are 
required for the integration over each time step. 

The features discussed above with regard to axial void distributions are also displayed by 
the mixture velocity distributions in figure 4. This velocity is zero at the beginning of the 
two-phase region and becomes, due to condensation, increasingly negative with increasing 
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distance from the inlet. As the end of the channel is approached, however, condensation and 
hence mean density change diminish; this is reflected in the zero slope of the velocity 
distribution at values of z* near unity. 

The results reported in figure 3 and 4 were obtained using 30 elements in the channel, and 
with ~r = 0.02. About 20 seconds of CPU time were required to obtain the results shown at 
~" = 0.40. 

Space limitations preclude the presentation of the results of other contrived problems 
(Khater et al. 1980). In some cases, conditions were such that a* varied sharply along the 
channel. For one of these cases extensive numerical experiments were performed to determine 
the dependence of solution accuracy on Ar and the number of elements used. It was found that 
very large time steps could be taken before accuracy became seriously degraded. In addition, 
the minimum number of elements was established more by the need to have enough points to 
draw a continuous curve than by a degradation in accuracy of the computed points. The FAST 
method gave roughly equivalent accuracy to that obtained by a simple explicit finite difference 
method (of solving [11], [12] and [14]) with an order of magnitude less computational effort. 
(For an RMS error in the predictions of 4%, FAST required 15 CPU seconds. The explicit 
solution method required 138 CPU seconds for an RMS error of 3.2%.) 

Blowdown 
Mass holdup measurements have been reported by Primoli & Hancox (1976) for blowdown 

from an apparatus consisting of an unheated feeder section, a heated section of larger diameter, 
and an unheated riser of still larger diameter, At the high initial pressure the feeder flow was 
highly subcooled, while fluid in the riser was near saturation. At the start of the transient the 
riser outlet was blocked, the feeder was opened to atmosphere, and the wall heat flux was 
maintained constant in the middle section, resulting in flow reversal and discharge back through 
the feeder. Because of the higher fluid temperature in the riser, flashing may be expected to 
occur first in the riser as well as at the open end of the feeder. As the system pressure becomes 
lower, the region of flashing may be expected to move into the heated section. The data 
reported included the mass holdup in the three sections and pressures at various locations in the 
apparatus. Mass holdup measurements are reporduced in figure 5. 

The boundary conditions applied in the model were zero velocity at the riser exit, and a 
system pressure equal to the average pressure in the riser section. The heat transfer model was 
the same as that used in the subcooled boiling application. Because of the rapid depres- 
surization, the flow will tend to be homogeneous and thus a value of unity has been assigned to 
Ca 

Turning now to the comparison of prediction and measurement in figure 5, it is seen that in 
general the agreement is good. The only significant discrepancy occurs in the feeder mass 
holdup at approximately 0.4 seconds where the experimental values are lower than the 
predicted values. This is likely a consequence of the assumption of spatially uniform pressure 
which underestimates flashing in the feeder. With this exception, the agreement is good. Mass 
balances on the apparatus showed that FAST conserved mass closely (within 1%) throughout 
the transient. 

In these predictions a large number of elements (125) were initially required in the channel 
because so many of them were carried out through the feeder with the fluid. The predictions 
required 8 CPU seconds. 

CLOSURE 

This paper has described the FAST method of solving the drift-flux equations for transient 
two-phase flows, including the effect of unequal phase temperatures (subcooled liquid-saturated 
vapour). Solutions have been reported to problems for which experimental data are available 
and to certain contrived problems that were designed to exercise fully the capabilities of FAST. 
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Figure 5, A comparison of predicted and measured mass holdup in the riser (a), heated section (b) and 
feede~ (c) for Standard Problem 3 (Promoli & Hancox 1976), 

The physical phenomena included subcooled boiling, flow reversal and blowdown. The main 
advantages of the FAST method are the small computational effort that is required to obtain 
accurate solutions, and the numerical stability of the scheme. 

The limitations of the present model were described in the Introduction. Of these, the need 
to specify the drift velocity is particularly restrictive. By including in the equation set an 
additional equation, derived from the liquid and vapour momentum equations by eliminating the 
pressure gradient, it is possible to calculate the difference between the phase velocities. An 
analytical solution to this equation has been found, in the spirit of the FAST method, and 
solutions to unequal velocity problems have been obtained (Khater & Raithby 1981). Although 
this was only a preliminary study, it showed that some of the advantages of FAST are lost (a) 
because more iterations are required for each time step, and (b) because at least one of the 
phase velocities is different from the velocity in the convective derivative that establishes how 
the control volumes move through the system. The first results in increased computational 
effort, while the second results in a smearing of steep profiles, similar to the effects of false 
diffusion. Despite these shortcomings, this method would likely prove competitive with other 

two-fluid solution methods. 
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NOMENCLATURE 
Ac cross-sectional area, m 2 
A~ interface area per unit length, m 
Cf dil/d p, J/kgMPa 
CG di6ldp, J/kg MPa 

Co (aj)/(ot)<j); Zuber's distribution parameter, dimensionless 
Cp specific heat, J/kg K 
Dh hydraulic diameter, m 

h coefficient of heat transfer, W/m2K 
i enthalpy, J/kg 

i* i (dimensionless) 
) to '  

j superficial velocity, m/s 
k thermal conductivity, W/m K 
L length, m 
P perimeter, m 
Pr Prandtl number 
p pressure, MPa 
[~ Op/Ot. MPa/sec 

q" heat flux. W/m 2 

Re ptjDhll~t. Reynolds number, dimensionless 
T temperature. K 

A T~ inlet subcooling. K 
t time. sec 
u internal energy. JJkg 
V velocity, m/sec 

Voj Vv-j.  (m/sec) 
V~ Co<j>+ Voj, m/sec 
V*~ VJVa, dimensionless 
~'* average rate of change of (V*)o with 

z axial position, m 
z* z/L. dimensionless 
a void fraction, dimensionless 

c~* coAp(a)/pL, dimensionless 
F rate of vapour generation, kgJm 3 sec 

F* (coApLIpuo6VDF. dimensionless 
h latent heat of vaporization. JJkg 

ho reference latent heat of vaporization. J/kg 
p density, kgJm 3 

Ap PL-- p6. kg/m 3 
r tVjL.  dimensionless 

az z - z ,  dimensionless 

Subscripts 
a arbitrary value 
[ saturated liquid 
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G saturated vapour 
i initial 

# initial for the jth element 
j the jth element 

L liquid 
Li liquid interface 
vi vapour interface 
0 channel inlet 

0i initial value at the channel inlet 
red reduced 

s saturation 
• v vapour 
w wall 

Superscripts 
n new time level 
0 old time level 

A P P E N D I X  A 

A.I Solution of the void propagation equation 
The void propagation, [16], is 

Dr -- ao + b ~  + co(a~): 

where 

pu, v. Ci = it) 

CoPL ] 

Pc (i~ ± iD 

bo = -(ao + c°). 

Subject to the boundary condition a *  = aij at ~" = ~'j, [17] is the solution to [AI] where 

Aa -- 4aaca - b ~a 

_ 1 I n b ~ + 2 c ~ - V - A ~  

2 
C2=--(  ~'+ bo + 2c~a:)  

c3=-~--~tan-' (b° + 2c°a~l'~ 

"/'i 

[M] 

[ ~ ]  

[ ~ ]  
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A.2 Solution of the space-time differential equation 
Equation [12] establishes the position of each element at the end of the time step. Rewriting 

this equation for the jth element 

dz: vz =(v:)o+Co, f f  (r*) dr = ~oo dz* [A41 

As discussed in the text, the integral can be approximated by 

fo - '  

Equation [A4] thus becomes, using approximation 6 in the text, 

dz~ _ ['~z* - (V*~)oi + (f'*~)o(~" - ri) + c i [A61 d~- J i -  

where 

Equation [A6] 
solution given by 

eJ'-(f'~)d" = S eY-(i'*i~l'((V*)°i + (V*)o(r - ri) + Cj) dr + Z~ ¢4 

Subject to the boundary condition z* = z* at r = ~'i, the above integration yields [18] in the text. 

A.3 Solution of the liquid enthalpy propagation equation 
Equation [19] is the liquid enthalpy propagation equation 

~r = kl + k2r + k3i*j + k4r 2 + ksri*) + k6(i*f [A7] 

Defining the constants 

-~ d ' * \ .  , z*)-  (~*)z*. = Co, 
1 

is a first order, linear, non-homogeneous ordindary differential equation; its 

( q'd.,phL + 

CL = hLiA~Ao 
AcCpL,~ [A8] 

DL=_CI p L 
V,~ho 

EL = - cap - L ; 
V~Ao 

EL = 
L 

V~oL(I - C ~  ° 6*) 

\ & ApCo 
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the constants kt through k6 are 

Equation [A7] has the form 

kT = (-ALia, + BLIP, "+ CLi~,i~,)FL 
/ 

k2 = (DLAL- ELBL- CLDLi~ i -- CLELi?i)FL 

k3 = ( A L -  B L -  CL(i?i + i~i))FL 

k4 = CLDLELFL 

k5 = (DL + EL)CLFL 

k6 = CLFL. [A9] 

where 

bo=-k3;  b l = - k s ;  b2=klk6; b3=k2k6; b4ffik4k6. [All] 

To solve [AIO], assume a series solution of the form 

u = ~ a.O') m+". [AI2] 
n ~ O  

Differentiating twice, and substituting into [AI0] yields 

f~ a.(n + m)(n + m -I)(?)"+"-2+ bo ~,, a.-l(n + m - l)('r) n+m-2 
nffiO nffil  

+ ~ [b2+ (n + c - 2)bda.-2(l")"+m'2 + b3 ~ a.-s(~') "+m-2 
n=2 n=3 

e~ 

+ Y~ a . - , (T)  "* ' -~  = O. 
n ~ 4  

Equating the sum of the coefficients of the different powers of ~" to zero starting with the 
lowest power (n = 0) we find, from the n = 0 and n = 1 equations, that m = 0 and that both ao 
and a, are arbitrary constants. The remainder of the coefficients in the series are found in the 
same manner and are listed below. To find i~ substitute [A12] into the transformation used. This 
yields 

~" ni2nTn_ 1 
iT_ = " ' t  [A14] 

nffiO 

[AI3] 

(iD'+ P(~')i?~+ Q(~)(iD 2= R(T) 

which is a Ricatti equation (Gradshteyn and Ryzhik, 1975). Introducing the transformation 
U' 

i~ = u-"@ [A7] becomes 

u"+ (bo + b : )u '  + (b2 + b3~ + b4(~)~)u = 0 [AIO] 
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Dividing by ao, and defining the coefficients An = an_ yields [20] in the text where AI is an 
- -  aO 

arbitrary constant and can be found from the boundary condition i~ = i~,~ at ~- = To. In the case 

where "to = O, A~ = - k6i~r The other coefficients are 

A2 = - (boA~ + b2)12 

A3 = -(2boA2 + (b2+ bl)Al  + b3)/6 [A15] 

An = - ( (n  - l)boA~-i + (b2 + (n - 2)bl)An-2 + b3A~-3 + b,A~_4)/(n(n - 1)); n - 4. 


